Quantum integrability and symmetric functions

Grant number: DE160100958 | Funding period: 2016 - 2019

Completed

Abstract

This project aims to develop new connections between quantum integrability and a central area of pure mathematics, symmetric function theory. Quantum integrability is one of the most important areas of mathematical physics, in view of its application to modern physical theories and its mathematical richness. The project intends to use advanced symmetric function techniques to calculate quantum mechanical quantities without any approximation, and to use the framework of quantum integrability to provide new results in symmetric function theory. The intended outcomes of the project will be new asymptotic expressions for correlation functions and more efficient computer algorithms for the calcul..

View full description