Algebraic groups and Springer theory

Grant number: DE160100975 | Funding period: 2016 - 2019



This project aims to explore representation theory, which is a study of the basic symmetries that occur in nature. By its nature, representation theory has applications to number theory, physics, national security and internet security, and other sciences. Generalised Springer theory plays an important role in representations of finite groups of Lie type. The project aims to develop an analogous theory in a more general setting that includes symmetric spaces. Moreover, the project aims to address various outstanding problems in algebraic groups. The project also plans to explore the connection between the geometry of certain null-cones and deformations of Galois representations.

University of Melbourne Researchers