Chemosensation in Ascaris infection
Grant number: DP180102049 | Funding period: 2018 - 2022
Completed
Abstract
This project aims to show the role of chemo-sensation as an equally important target for worm control, and explore pathways to prevent infection. Parasitic worms cost global food/textile industry more than $100 billion dollars per year, and cause disease in more than 1 billion people and domesticated animals world-wide. This project will use a combination of imaging, systems biology, chemical biology and microfluidic methods to provide significant benefits, such as exploring Ascaris chemo-sensation during larval migration, identify the key host queues and parasite genes regulating this process, and probe helminth chemosensation as a novel target for anti-parasitic treatments.