Classical and quantum invariants of low-dimensional manifolds

Grant number: DP190102363 | Funding period: 2019 - 2022

Active

Abstract

This project aims to advance our understanding of knots and 3-dimensional spaces, which arise naturally in fields as diverse as physics, computer graphics, chemistry and biology. Recent ideas from quantum field theory link physics to topology in dimensions 3 and 4, leading to powerful invariants of knots and 3-dimensional manifolds that include the Jones polynomial and the 3D-index. This project aims to resolve key questions relating these quantum invariants to classical topology and geometry. The project will have a major impact in low-dimensional topology, and lead to deep and unexpected connections between mathematics and mathematical physics.