Controlling spin coherence with rotation

Grant number: DP190100949 | Funding period: 2019 - 2022



This project aims to harness the ability to control the fundamental interactions which limit the precision of a diamond quantum sensor, enabling more sensitive magnetometry. Quantum sensors are unveiling new insights into nano-scale phenomena. Single atom defects in diamonds have been at the forefront of this revolution in nano-scale sensor technology. A unique capability, spinning diamond quantum sensors at up to 500,000 rpm, fast enough that quantum properties of the defects are preserved during a cycle has been established. This project will address the long-standing problem of nano-scale solid-materials characterisation using rotationally-enhanced quantum magnetic resonance spectroscopy.

Related publications (7)

University of Melbourne Researchers