Data Retrieval From Massive Information Structures

Grant number: DP140103256 | Funding period: 2014 - 2017

Completed

Abstract

Information search is an essential tool. But most current services regard the data as unstructured collections of independent documents, free of context. Next-generation search applications, such as over social networks, or corporate websites, or XML data sets, must account for the inherent relationships between data items, and must allow the efficient inclusion of search context. Queries should favour semantically local data, giving results that depend on the perceived state of the querier. This project will develop indexing and search techniques for massive structured data sets. The new search methods will incorporate theoretical advances and will be experimentally validated using industry..

View full description

Related publications (15)