Journal article

Wound healing angiogenesis: The clinical implications of a simple mathematical model

Jennifer A Flegg, Helen M Byrne, Mark B Flegg, DL Sean McElwain



Nonhealing wounds are a major burden for health care systems worldwide. In addition, a patient who suffers from this type of wound usually has a reduced quality of life. While the wound healing process is undoubtedly complex, in this paper we develop a deterministic mathematical model, formulated as a system of partial differential equations, that focusses on an important aspect of successful healing: oxygen supply to the wound bed by a combination of diffusion from the surrounding unwounded tissue and delivery from newly formed blood vessels. While the model equations can be solved numerically, the emphasis here is on the use of asymptotic methods to establish conditions under which new blo..

View full abstract

University of Melbourne Researchers


Awarded by Australian Research Council

Awarded by King Abdullah University of Science and Technology (KAUST)

Funding Acknowledgements

This work was supported by the award of a doctoral scholarship to J.A.F. from the Institute of Health and Biomedical Innovation at Queensland University of Technology and was funded by Australian Research Council's Discovery Projects funding scheme (Project no. DP0878011). This research was carried out while H.M.B. was visiting Queensland University of Technology, funded by the Institute of Health and Biomedical Innovation and the Discipline of Mathematical Sciences. Computational resources and services used in this work were provided by the HPC and Research Support Unit, QUT. This publication was based on work supported in part by Award no. KUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST).