Journal article

Dental enamel cells express functional SOCE channels

Meerim K Nurbaeva, Miriam Eckstein, Axel R Concepcion, Charles E Smith, Sonal Srikanth, Michael L Paine, Yousang Gwack, Michael J Hubbard, Stefan Feske, Rodrigo S Lacruz

SCIENTIFIC REPORTS | NATURE PUBLISHING GROUP | Published : 2015

Abstract

Dental enamel formation requires large quantities of Ca(2+) yet the mechanisms mediating Ca(2+) dynamics in enamel cells are unclear. Store-operated Ca(2+) entry (SOCE) channels are important Ca(2+) influx mechanisms in many cells. SOCE involves release of Ca(2+) from intracellular pools followed by Ca(2+) entry. The best-characterized SOCE channels are the Ca(2+) release-activated Ca(2+) (CRAC) channels. As patients with mutations in the CRAC channel genes STIM1 and ORAI1 show abnormal enamel mineralization, we hypothesized that CRAC channels might be an important Ca(2+) uptake mechanism in enamel cells. Investigating primary murine enamel cells, we found that key components of CRAC channel..

View full abstract

University of Melbourne Researchers

Grants

Awarded by NIH/NIDCR


Awarded by NIH


Awarded by NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES


Awarded by NATIONAL INSTITUTE OF DENTAL & CRANIOFACIAL RESEARCH


Funding Acknowledgements

This work was funded by NIH/NIDCR K99/R00 award (DE022799) to RSL, NIH grant AI097302 to SF, NIH/NIDCR (DE019629) to MLP, NIH grant AI083432 to YG, and by the Melbourne Research Unit for Facial Disorders to MJH. ARC is funded by a postdoctoral fellowship from the Alfonso Martin Escudero Foundation. The authors would like to thank the two anonymous reviewers for their comments which helped improve this manuscript. Finally, the authors would like to thank Johanna Warshaw for help with Figure 5.