Journal article

PUMA: The Positional Update and Matching Algorithm

JLB Line, RL Webster, B Pindor, DA Mitchell, CM Trott

Publications of the Astronomical Society of Australia | Cambridge University Press (CUP) | Published : 2017

Abstract

We present new software to cross-match low-frequency radio catalogues: the Positional Update and Matching Algorithm. The Positional Update and Matching Algorithm combines a positional Bayesian probabilistic approach with spectral matching criteria, allowing for confusing sources in the matching process. We go on to create a radio sky model using Positional Update and Matching Algorithm based on the Murchison Widefield Array Commissioning Survey, and are able to automatically cross-match ~ 98.5% of sources. Using the characteristics of this sky model, we create simple simulated mock catalogues on which to test the Positional Update and Matching Algorithm, and find that Positional Update and M..

View full abstract

Grants

Awarded by Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO)


Funding Acknowledgements

J. L. B. L. wishes to thank the anonymous referee for inspiring Section 5, and providing many other valuable suggestions that greatly improved the paper. J. L. B. L. wishes to acknowledge the support of the MIR and MIFR scholarships afforded by the University of Melbourne. This work was supported by resources awarded under Astronomy Australia Ltds merit allocation scheme on the gSTAR national facility at Swinburne University of Technology. gSTAR is funded by Swinburne and the Australian Governments Education Investment Fund. This work was also supported by resources provided by the Pawsey Supercomputing Centre with funding from the Australian Government and the Government of Western Australia. The simulations in this work make use of the Murchison Radio-astronomy Observatory, operated by CSIRO. We acknowledge the Wajarri Yamatji people as the traditional owners of the Observatory site. Support for the operation of the MWA is provided by the Australian Government Department of Industry and Science and Department of Education (National Collaborative Research Infrastructure Strategy: NCRIS), under a contract to Curtin University administered by Astronomy Australia Limited. We acknowledge the iVEC Petabyte Data Store and the Initiative in Innovative Computing and the CUDA Center for Excellence sponsored by NVIDIA at Harvard University. This research was conducted by the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through project number CE110001020.