Journal article

The identification of mitochondrial DNA variants in glioblastoma multiforme

Ka Yu Yeung, Adam Dickinson, Jacqueline F Donoghue, Galina Polekhina, Stefan J White, Dimitris K Grammatopoulos, Matthew McKenzie, Terrance G Johns, Justin C St John

ACTA NEUROPATHOLOGICA COMMUNICATIONS | BMC | Published : 2014

Abstract

BACKGROUND: Mitochondrial DNA (mtDNA) encodes key proteins of the electron transfer chain (ETC), which produces ATP through oxidative phosphorylation (OXPHOS) and is essential for cells to perform specialised functions. Tumor-initiating cells use aerobic glycolysis, a combination of glycolysis and low levels of OXPHOS, to promote rapid cell proliferation and tumor growth. Glioblastoma multiforme (GBM) is an aggressively malignant brain tumor and mitochondria have been proposed to play a vital role in GBM tumorigenesis. RESULTS: Using next generation sequencing and high resolution melt analysis, we identified a large number of mtDNA variants within coding and non-coding regions of GBM cell li..

View full abstract

Grants

Awarded by NHMRC


Funding Acknowledgements

This work was supported by the Victorian Government's Operational Infrastructure Support Program, Monash Institute of Medical Research start up funds to JCSJ; an NHMRC CDA Fellowship and the James and Vera Lawson Trust to MMcK; NHMRC Project Grant 1012020 to TGJ; the Marian and E. H. Flack Trust to SJW and JCSJ; KYY is funded through a Medical Research Council, UK, PhD scholarship. We are also grateful to the MHTP Medical Genomics Facility - ACRF Centre for Cancer Genomic Medicine for use of next generation sequencing.