Journal article

Gene set enrichment analysis made simple

Rafael A Irizarry, Chi Wang, Yun Zhou, Terence P Speed

STATISTICAL METHODS IN MEDICAL RESEARCH | SAGE PUBLICATIONS LTD | Published : 2009

Abstract

Among the many applications of microarray technology, one of the most popular is the identification of genes that are differentially expressed in two conditions. A common statistical approach is to quantify the interest of each gene with a p-value, adjust these p-values for multiple comparisons, choose an appropriate cut-off, and create a list of candidate genes. This approach has been criticised for ignoring biological knowledge regarding how genes work together. Recently a series of methods, that do incorporate biological knowledge, have been proposed. However, the most popular method, gene set enrichment analysis (GSEA), seems overly complicated. Furthermore, GSEA is based on a statistica..

View full abstract

University of Melbourne Researchers