Journal article

Assessment of Fetal Development Using Cardiac Valve Intervals

Faezeh Marzbanrad, Ahsan H Khandoker, Yoshitaka Kimura, Marimuthu Palaniswami, Gari D Clifford

Frontiers in Physiology | FRONTIERS MEDIA SA | Published : 2017

Abstract

An automated method to assess the fetal physiological development is introduced which uses the component intervals between fetal cardiac valve timings and the Q-wave of fetal electrocardiogram (fECG). These intervals were estimated automatically from one-dimensional Doppler Ultrasound and noninvasive fECG. We hypothesize that the fetal growth can be estimated by the cardiac valve intervals. This hypothesis was evaluated by modeling the fetal development using the cardiac intervals and validating against the gold standard gestational age identified by Crown-Rump Length (CRL). Among the intervals, electromechanical delay time, isovolumic contraction time, ventricular filling time and their int..

View full abstract

Grants

Awarded by University of Melbourne


Awarded by Fogarty International Center at the National Institute of Health


Awarded by EUNICE KENNEDY SHRIVER NATIONAL INSTITUTE OF CHILD HEALTH & HUMAN DEVELOPMENT


Funding Acknowledgements

This study was supported by an Australian Research Council Linkage grant (LP100200184) between the University of Melbourne, Tohoku University and Atom Medical Corporation in Japan. A part of the work was carried out under the Coordination, Support and Training Program for Translational Research, Ministry of Education, Culture, Sports, Science and Technology in Japan. This research was also in part through the Len Stevens visiting scholarship to Emory University and Georgia Institute of Technology, and GC is funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) and the Fogarty International Center at the National Institute of Health (Grant 1R21HD084114-01). The authors would also like to thank the clinical support service team at Tohoku University for providing the fetal Doppler and fECG data. The current study extends our previous conference paper (Marzbaurad et A, 2016) by adding fECG and 1D-DUS signal quality assessment which improved the results, analysis of the results for different quality and fetal heart rate, and analysis for 30 additional cases with abnormalities.