Journal article

Gas-Phase Intercluster Thiyl-Radical Induced C-H Bond Homolysis Selectively Forms Sugar C2-Radical Cations of Methyl D-Glucopyranoside: Isotopic Labeling Studies and Cleavage Reactions

Sandra Osburn, Gaetano Speciale, Spencer J Williams, Richard AJ O'Hair

JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY | SPRINGER | Published : 2017

Abstract

A suite of isotopologues of methyl D-glucopyranosides is used in conjunction with multistage mass spectrometry experiments to determine the radical site and cleavage reactions of sugar radical cations formed via a recently developed 'bio-inspired' method. In the first stage of CID (MS2), collision-induced dissociation (CID) of a protonated noncovalent complex between the sugar and S-nitrosocysteamine, [H3NCH2CH2SNO + M]+, unleashes a thiyl radical via bond homolysis to give the noncovalent radical cation, [H3NCH2CH2S• + M]+. CID (MS3) of this radical cation complex results in dissociation of the noncovalent complex to generate the sugar radical cation. Replacement of all exchangeable OH and ..

View full abstract