Journal article

Spectroscopic confirmation of an ultra-faint galaxy at the epoch of reionization

Austin Hoag, Marusa Bradac, Michele Trenti, Tommaso Treu, Kasper B Schmidt, Kuang-Han Huang, Brian C Lemaux, Julie He, Stephanie R Bernard, Louis E Abramson, Charlotte A Mason, Takahiro Morishita, Laura Pentericci, Tim Schrabback

NATURE ASTRONOMY | NATURE PUBLISHING GROUP | Published : 2017

Abstract

Within one billion years of the Big Bang, intergalactic hydrogen was ionized by sources emitting ultraviolet and higher energy photons. This was the final phenomenon to globally affect all the baryons (visible matter) in the Universe. It is referred to as cosmic reionization and is an integral component of cosmology. It is broadly expected that intrinsically faint galaxies were the primary ionizing sources due to their abundance in this epoch 1,2. However, at the highest redshifts (z > 7.5; lookback time 13.1 Gyr), all galaxies with spectroscopic confirmations to date are intrinsically bright and, therefore, not necessarily representative of the general population 3. Here, we report the uneq..

View full abstract

University of Melbourne Researchers

Grants

Awarded by NASA (National Aeronautics and Space Administration) Headquarters under the NASA Earth and Space Science Fellowship Program


Awarded by NASA


Awarded by NASA through a grant from the STScI


Awarded by NASA from STScI


Funding Acknowledgements

A.H. and this work were supported by NASA (National Aeronautics and Space Administration) Headquarters under the NASA Earth and Space Science Fellowship Program, Grant ASTRO14F-0007. The data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and NASA. The observatory was made possible by the generous financial support of the W.M. Keck Foundation. The authors thank L. Rizzi and M. Kassis for help with the Multi-Object Spectrometer for Infra-Red Exploration (MOSFIRE) observations and data reduction. The authors recognize and acknowledge the very significant cultural role and reverence that the summit of Maunakea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. This work is also based on observations made with the NASA/European Space Agency Hubble Space Telescope (HST), obtained at the Space Telescope Science Institute (STScI), which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contracts NAS5-26555 and NNX08AD79G, and the European Southern Observatory Very Large Telescopes. Support for the Grism Lens-Amplified Survey from Space (GLASS) (HST-G0-13459) was provided by NASA through a grant from the STScI. We are very grateful to the staff of the Space Telescope Science Institute for their assistance in planning, scheduling and executing the observations, and in setting up the GLASS public release website. Support for this work was also provided by NASA through an award issued by the Jet Propulsion Laboratory, California Institute of Technology and through HST-AR-13235, HST-GO-13177, HST-GO-10200, HST-GO-10863 and HST-GO-11099 from STScI. Observations were also carried out using the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was also provided by NASA through a Spitzer award issued by the Jet Propulsion Laboratory, California Institute of Technology.