Journal article

Compound Poisson approximation for the distribution of extremes

AD Barbour, SY Novak, A Xia

Advances in Applied Probability | Published : 2002

Abstract

Empirical point processes of exceedances play an important role in extreme value theory, and their limiting behaviour has been extensively studied. Here, we provide explicit bounds on the accuracy of approximating an exceedance process by a compound Poisson or Poisson cluster process, in terms of a Wasserstein metric that is generally more suitable for the purpose than the total variation metric. The bounds only involve properties of the finite, empirical sequence that is under consideration, and not of any limiting process. The argument uses Bernstein blocks and Lindeberg's method of compositions.

University of Melbourne Researchers

Citation metrics