Conference Proceedings

Anomaly Detection Using the Dempster-Shafer Method

Qi Chen, Uwe Aickelin

Proceedings of the 2006 International Conference on Data Mining (DMIN2006 | CSREA Press | Published : 2006

Abstract

In this paper, we implement an anomaly detection system using the Dempster-Shafer method. Using two standard benchmark problems we show that by combining multiple signals it is possible to achieve better results than by using a single signal. We further show that by applying this approach to a real-world email dataset the algorithm works for email worm detection. Dempster-Shafer can be a promising method for anomaly detection problems with multiple features (data sources), and two or more classes.

University of Melbourne Researchers