Journal article

Demultiplexing barcoded Oxford Nanopore reads with deep convolutional neural networks

Ryan Wick, Louise Judd, Kathryn Holt

Published : 2018

Abstract

Multiplexing, the simultaneous sequencing of multiple barcoded DNA samples on a single flow cell, has made Oxford Nanopore sequencing cost-effective for small genomes. However, it depends on the ability to sort the resulting sequencing reads by barcode, and current demultiplexing tools fail to classify many reads. Here we present Deepbinner, a tool for Oxford Nanopore demultiplexing that uses a deep neural network to classify reads based on the raw electrical read signal. This ‘signal-space’ approach allows for greater accuracy than existing ‘base-space’ tools (Albacore and Porechop) for which signals must first be converted to DNA base calls, itself a complex problem that can introduce nois..

View full abstract

University of Melbourne Researchers

Citation metrics