Journal article

Implications of population-level immunity for the emergence of artemisinin-resistant malaria: a mathematical model

Nick Scott, Ricardo Ataide, David P Wilson, Margaret Hellard, Ric N Price, Julie A Simpson, Freya J Fowkes

MALARIA JOURNAL | BMC | Published : 2018

Abstract

BACKGROUND: Artemisinin-resistant Plasmodium falciparum has emerged in the Greater Mekong Subregion, an area of relatively low transmission, but has yet to be reported in Africa. A population-based mathematical model was used to investigate the relationship between P. falciparum prevalence, exposure-acquired immunity and time-to-emergence of artemisinin resistance. The possible implication for the emergence of resistance across Africa was assessed. METHODS: The model included human and mosquito populations, two strains of malaria ("wild-type", "mutant"), three levels of human exposure-acquired immunity (none, low, high) with two types of immunity for each level (sporozoite/liver stage immuni..

View full abstract

Grants

Awarded by Australian National Health and Medical Research Council


Awarded by Wellcome Trust Senior Fellow in Clinical Science


Funding Acknowledgements

This work was supported by the Australian Research Council (Future Fellowship F.J.I. Fowkes) and the Australian National Health and Medical Research Council (a Principal Research Fellowship APP1112297 to M. Hellard, Senior Research Fellowship 1104975 to J.A. Simpson, project Grants 1060785 and 1100394 to F.J.I. Fowkes and J.A. Simpson). RNP is a Wellcome Trust Senior Fellow in Clinical Science (200909). The authors gratefully acknowledge support for this work from the Victorian Operational Infrastructure Support Program.