Journal article

Reduction spheroids preserve a uranium isotope record of the ancient deep continental biosphere

Sean McMahon, Ashleigh VS Hood, John Parnell, Stephen Bowden

NATURE COMMUNICATIONS | NATURE PUBLISHING GROUP | Published : 2018

Abstract

Life on Earth extends to several kilometres below the land surface and seafloor. This deep biosphere is second only to plants in its total biomass, is metabolically active and diverse, and is likely to have played critical roles over geological time in the evolution of microbial diversity, diagenetic processes and biogeochemical cycles. However, these roles are obscured by a paucity of fossil and geochemical evidence. Here we apply the recently developed uranium-isotope proxy for biological uranium reduction to reduction spheroids in continental rocks (red beds). Although these common palaeo-redox features have previously been suggested to reflect deep bacterial activity, unequivocal evidenc..

View full abstract

University of Melbourne Researchers

Grants

Awarded by NASA Astrobiology Institute


Awarded by European Union's Horizon 2020 Research and Innovation Programme under Marie Sklodowska-Curie grant


Awarded by NERC


Funding Acknowledgements

S.M. acknowledges the support of the NASA Astrobiology Institute grant NNA13AA90A, Foundations of Complex Life, Evolution, Preservation and Detection on Earth and Beyond, and the European Union's Horizon 2020 Research and Innovation Programme under Marie Sklodowska-Curie grant agreement 747877. Av.S.H. was supported by a NASA Astrobiology Institute Postdoctoral Fellowship and acknowledges the support of Xiangli Wang and Devon Cole for lab assistance. S.M. and Av.S.H. thank Noah Planavsky for technical advice, lab support, and comments on an early draft. J.P. was supported by NERC under grant number NE/L001764/1. The isotope facility at SUERC is supported by NERC. The authors thank the two anonymous referees for constructive criticisms that improved the manuscript.