Journal article

General-stacking-fault energies in highly strained metallic environments: Ab initio calculations

C Brandl, PM Derlet, H Van Swygenhoven

PHYSICAL REVIEW B | AMER PHYSICAL SOC | Published : 2007

Abstract

Past work has shown that the generalized-stacking-fault surface energy (GSFE) curve, which represents the energy dependency of rigidly shearing an fcc crystal at a (111) plane along a [-1-12] slip direction, can provide invaluable information on the nature of the dislocation activity in nanocrystalline Ni, Al, and Cu. Atomistic simulations have also revealed the complex localized strain environment in which nanocrystalline dislocation nucleation occurs. Using the density functional theory method, the present work investigates the role of an imposed isotropic and simple shear strain field on the shape of a GSFE curve for Al, Cu, and Ni, and, in particular, how this affects the ratio of the st..

View full abstract

University of Melbourne Researchers