Journal article

Optimal Stochastic Evasive Maneuvers Using the Schrodinger's Equation

Farhad Farokhi, Magnus Egerstedt

IEEE CONTROL SYSTEMS LETTERS | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC | Published : 2019

Abstract

In this letter, preys with stochastic evasion policies are considered. The stochasticity adds unpredictable changes to the prey's path for avoiding predator's attacks. The prey's cost function is composed of two terms balancing the unpredictability factor (by using stochasticity to make the task of forecasting its future positions by the predator difficult) and energy consumption (the least amount of energy required for performing a maneuver). The optimal probability density functions of the actions of the prey for trading-off unpredictability and energy consumption is shown to be characterized by the stationary Schrödinger's equation.

Grants

Funding Acknowledgements

The work of F. Farokhi was supported in part by the McKenzie Fellowship from the University of Melbourne and in part by the VESKI Victoria Fellowship from the Victorian State Government. The work of M. Egerstedt was supported by the National Science Foundation. Recommended by Senior Editor F. Dabbene.