Journal article

Voltage- and temperature-dependent electrical behavior of gap-type Ag–Ag2S–Pt atomic switch

Mir Massoud Aghili Yajadda, Xiao Gao

Applied Physics A | Springer Science and Business Media LLC | Published : 2019

Abstract

The voltage- and the temperature-dependent electrical behavior of a gap-type Ag–Ag2S–Pt atomic switch is theoretically investigated. The electrical tunnel current passing through the switch is calculated and the growth of Ag nanowires between two electrodes is simulated. Our calculations show the switching time (the time that is required to decrease the resistance of switch below the resistance quantum RQ ≈ 6.5 kΩ) exponentially decreases as the applied voltage increases that agrees very well with experimental findings. Furthermore, we assumed the Ag2S layer is a few atomic layer thick so the diffusion time of Ag+ ions within the Ag2S layer can be neglected compared to the formation of Ag na..

View full abstract

University of Melbourne Researchers

Grants

Funding Acknowledgements

Yajadda would like to acknowledge the Australian Research Council, Centre of Excellence for Integrative Brain Function and the University of Sydney for their support. Gao would like to acknowledge the University of Melbourne for its support through the McKenzie Postdoctoral Fellowship Program.