Journal article

Positive associations among rare species and their persistence in ecological assemblages

Joaquin Calatayud, Enrique Andivia, Adrian Escudero, Carlos J Melian, Ruben Bernardo-Madrid, Markus Stoffel, Cristina Aponte, Nagore G Medina, Rafael Molina-Venegas, Xavier Arnan, Martin Rosvall, Magnus Neuman, Jorge Ari Noriega, Fernanda Alves-Martins, Isabel Draper, Arantzazu Luzuriaga, Juan Antonio Ballesteros-Canovas, Cesar Morales-Molino, Pablo Ferrandis, Asier Herrero Show all

Nature Ecology & Evolution | NATURE PUBLISHING GROUP | Published : 2020

Abstract

According to the competitive exclusion principle, species with low competitive abilities should be excluded by more efficient competitors; yet, they generally remain as rare species. Here, we describe the positive and negative spatial association networks of 326 disparate assemblages, showing a general organization pattern that simultaneously supports the primacy of competition and the persistence of rare species. Abundant species monopolize negative associations in about 90% of the assemblages. On the other hand, rare species are mostly involved in positive associations, forming small network modules. Simulations suggest that positive interactions among rare species and microhabitat prefere..

View full abstract

Grants

Awarded by Carl Tryggers Foundation for Scientific Research


Awarded by Universidad Complutense de Madrid


Awarded by Swiss National Science Foundation


Awarded by Spanish Ministry of Science and Innovation predoctoral fellowship


Awarded by University of Geneva (project: C-CIA)


Awarded by Ramon y Cajal research contract by the Spanish Ministry of Economy and Competitiveness (MINECO)


Awarded by Swedish Research Council


Awarded by Colombian COLCIENCIAS doctoral scholarship


Awarded by CAPES


Awarded by AGORA Project (MINECO)


Awarded by Basque Country Government


Awarded by CNPq


Funding Acknowledgements

We thank J. Hortal and S. Allesina for their critical comments on an early version of the manuscript. The simulations were performed on resources provided by the Swedish National Infrastructure for Computing at HPC2N. J.C. is supported by the Carl Tryggers Foundation for Scientific Research (no. CTS 16:384). E.A. is supported by a postdoctoral grant (no. CT39/17) funded by the Universidad Complutense de Madrid. C.J.M. is supported by the Swiss National Science Foundation (grant no. SNSF-31003A-144162). R.B.-M. is supported by the Spanish Ministry of Science and Innovation predoctoral fellowship no. BES-2013-065753. M.S., J.A.B.-C. and J.M.-G. acknowledge support from the University of Geneva (project: C-CIA; no. 309354). X.A. is supported by a Ramon y Cajal research contract by the Spanish Ministry of Economy and Competitiveness (MINECO, no. RYC-2015-18448). M.R. is supported by the Swedish Research Council grant no. 2016-00796. J.A.N. was supported by a Colombian COLCIENCIAS doctoral scholarship (no. 617-2013). F.A.-M. is grateful to CAPES for a doctoral scholarship (no. 120147/2016-01). A.L., P.F. and J.M.-G. were funded by the AGORA Project (MINECO, no. CGL2016-77417-P). C.M.-M. was supported by an IdEx Bordeaux Postdoctoral Fellowship (VECLIMED project). A.H. was supported by the University of Alcala own research programme 2018 postdoctoral grant and Basque Country Government funding support to FisioClimaCO2 (IT1022-16) research group. L.J. received productivity grants from of CNPq (process no. 307597/2016-4).