Journal article

A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns

Wei Jiao, Gurnit Atwal, Paz Polak, Rosa Karlic, Edwin Cuppen, Alexandra Danyi, Jeroen de Ridder, Carla van Herpen, Martijn P Lolkema, Neeltje Steeghs, Gad Getz, Quaid Morris, Lincoln D Stein

Nature Communications | NATURE PUBLISHING GROUP | Published : 2020

Abstract

In cancer, the primary tumour's organ of origin and histopathology are the strongest determinants of its clinical behaviour, but in 3% of cases a patient presents with a metastatic tumour and no obvious primary. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, we train a deep learning classifier to predict cancer type based on patterns of somatic passenger mutations detected in whole genome sequencing (WGS) of 2606 tumours representing 24 common cancer types produced by the PCAWG Consortium. Our classifier achieves an accuracy of 91% on held-out tumor samples and 88% and 83% respectively on independent primary and metastatic samples, roughly double the ..

View full abstract

University of Melbourne Researchers

Grants

Awarded by European Structural and Investment Funds grant for the Croatian National Centre of Research Excellence in Personalized Healthcare


Awarded by Croatian National Centre of Research Excellence for Data Science and Advanced Cooperative Systems


Awarded by European Commission


Awarded by Croatian Science Foundation


Awarded by NWO-Vidi grant


Funding Acknowledgements

We would like to thank Irina Kalatskaya, Quang Trinh, Jared Simpson, Katie Hoadley and David Louis for their helpful comments during preparation of this paper. We also gratefully acknowledge the assistance of Drs. Ludmil B. Alexandrov, Mi Ni Huang, Arnoud Boot, Steven Gallinger, Julie Wilson, Haiko J. Bloemendal, Laurens Beerepoot, Steven G. Rozen and Michael R. Stratton in providing independent WGS primary and metastatic tumour SNV profiles used for validation. We also thank W.J., L.S. and Q.M. supported by funding from the Province of Ontario, Canada. QM's research was supported by a gift from NVIDIA foundation, an advised fund of the Silicon Valley Community Foundation. RK was supported by the European Structural and Investment Funds grant for the Croatian National Centre of Research Excellence in Personalized Healthcare (contract #KK.01.1.1.01.0010), Croatian National Centre of Research Excellence for Data Science and Advanced Cooperative Systems (contract KK.01.1.1.01.0009), the European Commission Seventh Framework Program (Integra-Life; grant 315997) and Croatian Science Foundation (grant IP-2014-09-6400). J.d.R. is supported by a NWO-Vidi grant (016.Vidi.178.023). We acknowledge the contributions of the many clinical networks across ICGC and TCGA who provided samples and data to the PCAWG Consortium, and the contributions of the Technical Working Group and the Germline Working Group of the PCAWG Consortium for collation, realignment and harmonised variant calling of the cancer genomes used in this study. We thank the patients and their families for their participation in the individual ICGC and TCGA projects.