Journal article

Exaiptasia diaphana from the great barrier reef: a valuable resource for coral symbiosis research

Ashley M Dungan, Leon M Hartman, Giada Tortorelli, Roy Belderok, Annika M Lamb, Lynn Pisan, Geoffrey I McFadden, Linda L Blackall, Madeleine JH van Oppen

SYMBIOSIS | SPRINGER | Published : 2020

Abstract

The sea anemone, Exaiptasia diaphana, previously known as Exaiptasia pallida or Aiptasia pallida, has become increasingly popular as a model for cnidarian-microbiome symbiosis studies due to its relatively rapid growth, ability to reproduce sexually and asexually, and symbiosis with diverse prokaryotes and the same microalgal symbionts (family Symbiodiniaceae) as its coral relatives. Clonal E. diaphana strains from Hawaii, the Atlantic Ocean, and Red Sea are now established for use in research. Here, we introduce Great Barrier Reef (GBR)-sourced E. diaphana strains as additions to the model repertoire. Sequencing of the 18S rRNA gene confirmed the anemones to be E. diaphana while genome-wide..

View full abstract

Grants

Awarded by Australian Research Council


Awarded by Australian Research Council Laureate Fellowship


Funding Acknowledgements

This research was funded by Australian Research Council Discovery Project grants DP160101468 (to MJHvO and LLB) and DP160101539 (to GIM and MJHvO). We thank Lesa Peplow for facilitating transport of the initial anemone cultures from AIMS to SUT and UoM and Rebecca Alfred from SUT for initial anemone culture maintenance. We acknowledge Anton Cozijnsen, Keren Maor-Landaw, Samantha Girvan, Ruby Vanstone and Gabriela Rodriguez from University of Melbourne for assisting with anemone husbandry and Laura Leone, Lisa Foster, and Lona Dinha from the Melbourne Histology Platform for histological sample preparation and sectioning. SCAR marker reference sequences were provided by Dan Thornhill and Liz Hambleton (AG Guse Lab, Centre for Organismal Studies (COS), Universitat Heidelberg). MJHvO acknowledges Australian Research Council Laureate Fellowship FL180100036.