Journal article

Caloric Restriction Protects against Lactacystin-Induced Degeneration of Dopamine Neurons Independent of the Ghrelin Receptor.

Jessica Coppens, Eduard Bentea, Jacqueline A Bayliss, Thomas Demuyser, Laura Walrave, Giulia Albertini, Joeri Van Liefferinge, Lauren Deneyer, Najat Aourz, Ann Van Eeckhaut, Jeanelle Portelli, Zane B Andrews, Ann Massie, Dimitri De Bundel, Ilse Smolders

International Journal of Molecular Sciences | MDPI AG | Published : 2017

Abstract

Parkinson's disease (PD) is a neurodegenerative disorder, characterized by a loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc). Caloric restriction (CR) has been shown to exert ghrelin-dependent neuroprotective effects in the 1-methyl-4-phenyl-1,2,3,6-tetrathydropyridine (MPTP)-based animal model for PD. We here investigated whether CR is neuroprotective in the lactacystin (LAC) mouse model for PD, in which proteasome disruption leads to the destruction of the DA neurons of the SNc, and whether this effect is mediated via the ghrelin receptor. Adult male ghrelin receptor wildtype (WT) and knockout (KO) mice were maintained on an ad libitum (AL) diet or on a 30% CR reg..

View full abstract

University of Melbourne Researchers