Journal article

Application of a Genetic Algorithm for Finding Edit Distances between Process Models

AA Kalenkova, DA Kolesnikov

Automatic Control and Computer Sciences | Springer | Published : 2019

Abstract

Finding graph edit distances (determining the similarity of graph models) is an important task in various areas of computer science, such as image analysis, machine learning, and chemoinformatics. In recent years, due to the development of process mining techniques, it has become necessary to adapt the existing graph matching methods to be applied to the analysis of process models (annotated graphs) discovered from event logs of information systems. In particular, methods for finding the minimum graph edit distance can be used to reveal patterns (subprocesses) and to compare discovered process models. As was shown experimentally and theoretically substantiated, exact methods for finding the ..

View full abstract