Journal article

Cohomology and base change for algebraic stacks

Jack Hall

MATHEMATISCHE ZEITSCHRIFT | SPRINGER HEIDELBERG | Published : 2014

Abstract

We prove that cohomology and base change holds for algebraic stacks, generalizing work of Brochard in the tame case. We also show that Hom-spaces on algebraic stacks are represented by abelian cones, generalizing results of Grothendieck, Brochard, Olsson, Lieblich, and Roth–Starr. To accomplish all of this, we prove that a wide class of relative Ext-functors in algebraic geometry are coherent (in the sense of M. Auslander).

University of Melbourne Researchers