Journal article

Predicting outcomes of pelvic exenteration using machine learning.

undefined PelvEx Collaborative

Colorectal Dis | Published : 2020

Abstract

AIM: We aim to compare machine learning with neural network performance in predicting R0 resection (R0), length of stay > 14 days (LOS), major complication rates at 30 days postoperatively (COMP) and survival greater than 1 year (SURV) for patients having pelvic exenteration for locally advanced and recurrent rectal cancer. METHOD: A deep learning computer was built and the programming environment was established. The PelvEx Collaborative database was used which contains anonymized data on patients who underwent pelvic exenteration for locally advanced or locally recurrent colorectal cancer between 2004 and 2014. Logistic regression, a support vector machine and an artificial neural network ..

View full abstract