Journal article

The influence of soil age on ecosystem structure and function across biomes

Manuel Delgado-Baquerizo, Peter B Reich, Richard D Bardgett, David J Eldridge, Hans Lambers, David A Wardle, Sasha C Reed, Cesar Plaza, G Kenny Png, Sigrid Neuhauser, Asmeret Asefaw Berhe, Stephen C Hart, Hang-Wei Hu, Ji-Zheng He, Felipe Bastida, Sebastian Abades, Fernando D Alfaro, Nick A Cutler, Antonio Gallardo, Laura Garcia-Velazquez Show all

Nature Communications | NATURE RESEARCH | Published : 2020

Abstract

The importance of soil age as an ecosystem driver across biomes remains largely unresolved. By combining a cross-biome global field survey, including data for 32 soil, plant, and microbial properties in 16 soil chronosequences, with a global meta-analysis, we show that soil age is a significant ecosystem driver, but only accounts for a relatively small proportion of the cross-biome variation in multiple ecosystem properties. Parent material, climate, vegetation and topography predict, collectively, 24 times more variation in ecosystem properties than soil age alone. Soil age is an important local-scale ecosystem driver; however, environmental context, rather than soil age, determines the rat..

View full abstract

University of Melbourne Researchers

Grants

Awarded by European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant


Awarded by Ramon y Cajal grant from the Spanish Ministry of Science and Innovation


Awarded by BES Grant


Awarded by FEDER funds


Awarded by i-LINK+2018 from CSIC


Awarded by Fundacion Seneca" from Murcia Province


Awarded by Spanish State Plan for Scientific and Technical Research and Innovation (2013-2016)


Awarded by Spanish Ministry of Science


Awarded by FONDECYT


Awarded by EPASTAR Graduate Fellowship


Funding Acknowledgements

This project received funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant Agreement No. 702057 (CLIMIFUN). M.D.-B. is supported by a Ramon y Cajal grant from the Spanish Ministry of Science and Innovation (RYC2018-025483-I), and by the BES Grant Agreement No. LRB17\1019 (MUSGONET). F.B. is grateful to the Spanish Ministry and FEDER funds for the project AGL2017-85755-R, the i-LINK+2018 (LINKA20069) from CSIC, and received funds from "Fundacion Seneca" from Murcia Province (19896/GERM/15). S.R. was supported by the US Geological Survey Ecosystems Mission Area. C.P. acknowledges support from the Spanish State Plan for Scientific and Technical Research and Innovation (2013-2016), award ref. AGL201675762-R (AEI/FEDER, UE). A.G. acknowledges support from the Spanish Ministry of Science (CGL2017-88124-R). F.A. is supported by FONDECYT 11180538 and S.A. by FONDECYT 1170995. We would like to thank Peter Vitousek for his comments on a previous draft of this paper. Moreover, we thank Matt Gebert, Jessica Henley, Fernando T. Maestre, Victoria Ochoa, and Beatriz Gozalo for their help with lab analyses, and Emilio Guirado for his advice with topographic analyses. We also want to thank Osvaldo Sala, Matthew A. Bowker, Peter Vitousek, Courtney Currier, Martin Kirchmair, Victor M. Pena-Ramirez, Lynn Riedel, Julie Larson, Katy Waechter, David Buckner, and Brian Anacker for their help with soil sampling, and to the City of Boulder Open Space and Mountain Parks for allowing us to conduct these samplings. We are also grateful to the Division of Forestry and Wildlife of the State of Hawai'i and Koke'e State Park for their logistical assistance and for allowing us access to the HA sites. The Arizona research sites were established with the support of an EPASTAR Graduate Fellowship (U-916251), a Merriam-Powell Center for Environmental Research Graduate Fellowship, an Achievement Rewards for College Scientists (ARCS) Foundation of Arizona Scholarship, and McIntire-Stennis appropriations to Northern Arizona University and the State of Arizona. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.