Journal article

Measuring immunity to SARS-CoV-2 infection: comparing assays and animal models

David S Khoury, Adam K Wheatley, Mitchell D Ramuta, Arnold Reynaldi, Deborah Cromer, Kanta Subbarao, David H O'Connor, Stephen J Kent, Miles P Davenport



The rapid scale-up of research on coronavirus disease 2019 (COVID-19) has spawned a large number of potential vaccines and immunotherapies, accompanied by a commensurately large number of in vitro assays and in vivo models to measure their effectiveness. These assays broadly have the same end-goal - to predict the clinical efficacy of prophylactic and therapeutic interventions in humans. However, the apparent potency of different interventions can vary considerably between assays and animal models, leading to very different predictions of clinical efficacy. Complete harmonization of experimental methods may be intractable at the current pace of research. However, here we analyse a selection ..

View full abstract


Awarded by National Health and Medical Research Council (NHMRC)

Awarded by US National Institutes of Health (NIH)

Funding Acknowledgements

The authors are supported by National Health and Medical Research Council (NHMRC) Fellowship and Investigator grants 1173027 (to M.P.D.), 1136322 (to S.J.K.), 1141921 (to D.S.K.), 1173528 (to D.C.), 1177174 (to K.S.) and 1173433 (to A.K.W.). The Melbourne World Health Organization (WHO) Collaborating Centre for Reference and Research on Influenza is supported by the Australian Government Department of Health. SARS-CoV-2 work by D.H.O'C. is supported by US National Institutes of Health (NIH) awards P51OD011106 and R24 OD017850. Additional funding was provided by the Wisconsin National Primate Research Center, the Wisconsin Partnership Program and the Wisconsin Alumni Research Foundation COVID-19 Challenge.