Journal article

Network-based atrophy modeling in the common epilepsies: A worldwide ENIGMA study

Sara Lariviere, Raul Rodriguez-Cruces, Jessica Royer, Maria Eugenia Caligiuri, Antonio Gambardella, Luis Concha, Simon S Keller, Fernando Cendes, Clarissa Yasuda, Leonardo Bonilha, Ezequiel Gleichgerrcht, Niels K Focke, Martin Domin, Felix von Podewills, Soenke Langner, Christian Rummel, Roland Wiest, Pascal Martin, Raviteja Kotikalapudi, Terence J O'Brien Show all

SCIENCE ADVANCES | AMER ASSOC ADVANCEMENT SCIENCE | Published : 2020

Abstract

Epilepsy is increasingly conceptualized as a network disorder. In this cross-sectional mega-analysis, we integrated neuroimaging and connectome analysis to identify network associations with atrophy patterns in 1021 adults with epilepsy compared to 1564 healthy controls from 19 international sites. In temporal lobe epilepsy, areas of atrophy colocalized with highly interconnected cortical hub regions, whereas idiopathic generalized epilepsy showed preferential subcortical hub involvement. These morphological abnormalities were anchored to the connectivity profiles of distinct disease epicenters, pointing to temporo-limbic cortices in temporal lobe epilepsy and fronto-central cortices in idio..

View full abstract

Grants

Awarded by FAPESP (Sao Paulo Research Foundation, Brazil)


Awarded by National Health and Medical Research Council (NHMRC) of Australia


Awarded by Conacyt (Programa de Laboratorios Nacionales)


Awarded by Swiss National Science Foundation


Awarded by Science Foundation Ireland Research Frontiers Programme


Awarded by NIH Big Data to Knowledge (BD2K) program


Awarded by ENIGMA World Aging Center


Awarded by ENIGMA Sex Differences Initiative


Awarded by U.K. Medical Research Council


Awarded by European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie


Awarded by CIHR


Awarded by NIH (NINDS)


Awarded by SickKids Foundation


Awarded by Natural Sciences and Engineering Research Council of Canada (NSERC)


Awarded by UNAM-DGAPA


Funding Acknowledgements

This work was partly undertaken at UCLH/UCL, which received a proportion of funding from the Department of Health's NIHR Biomedical Research Centres funding scheme. The work was also supported by the Epilepsy Society, UK. We are grateful to the Wolfson Trust and the Epilepsy Society for supporting the Epilepsy Society MRI scanner. UNICAMP was supported by FAPESP (Sao Paulo Research Foundation, Brazil) grant 2013/07559-3: the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN). The Florey Institute acknowledges research funding from the National Health and Medical Research Council (NHMRC) of Australia (program grant 1091593, practitioner fellowship 1060312) and the support from the Victorian Government and, in particular, the funding from the Operational Infrastructure Support Grant. The UNAM centre was funded by UNAM-DGAPA (IB201712, IG200117) and Conacyt (Programa de Laboratorios Nacionales; 181508, 1782). The Bern Research Centre was funded by the Swiss National Science Foundation (grant 180365). This research was supported in part by the Science Foundation Ireland Research Frontiers Programme award (08/RFP/GEN1538). Core funding for ENIGMA was provided by the NIH Big Data to Knowledge (BD2K) program under consortium grant U54 EB020403 (to P.M.T.), by the ENIGMA World Aging Center (R56 AG058854; to P.M.T.), and by the ENIGMA Sex Differences Initiative (R01 MH116147; to P.M.T.). S. Lar. acknowledges funding from Fonds de la Recherche du Quebec-Sante (FRQ-S) and the Canadian Institutes of Health Research (CIHR). J.R. was supported by the CIHR. S.S.K. was funded by the U.K. Medical Research Council (grant numbers MR/S00355X/1 and MR/K023152/1). P.S. developed this work within the framework of the DINOGMI Department of Excellence of MIUR 2018-2022 (legge 232 del 2016). T.J.O. acknowledges funding support from the NHMRC and RMH Neuroscience Foundation. S.J.A.C. and M.P.R. were funded by the U.K. Medical Research Council (programme grant MR/K013998/1). E.A. was funded by the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie (grant agreement no. 750884). S.B.V. was funded by the National Institute for Health Research University College London Hospitals Biomedical Research Centre. A.B. and N.B. were supported by FRQ-S and CIHR (MOP-57840, MOP-123520). C.R.M. acknowledges funding from the NIH (NINDS R01NS065838 and R21 NS107739). B.C.B. acknowledges research funding from the SickKids Foundation (NI17-039), the Natural Sciences and Engineering Research Council of Canada (NSERC; Discovery-1304413), CIHR (FDN-154298), Azrieli Center for Autism Research (ACAR), an MNI-Cambridge collaboration grant, salary support from FRQ-S (Chercheur-Boursier), and the Canada Research Chairs (CRC) Program.