Conference Proceedings

Tangled up in BLEU: Reevaluating the Evaluation of Automatic Machine Translation Evaluation Metrics

Nitika Mathur, Timothy Baldwin, Trevor Cohn

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics | Association for Computational Linguistics | Published : 2020

Abstract

Automatic metrics are fundamental for the development and evaluation of machine translation systems. Judging whether, and to what extent, automatic metrics concur with the gold standard of human evaluation is not a straightforward problem. We show that current methods for judging metrics are highly sensitive to the translations used for assessment, particularly the presence of outliers, which often leads to falsely confident conclusions about a metric’s efficacy. Finally, we turn to pairwise system ranking, developing a method for thresholding performance improvement under an automatic metric against human judgements, which allows quantification of type I versus type II errors incurred, i.e...

View full abstract

Citation metrics