Journal article

EM-stellar: benchmarking deep learning for electron microscopy image segmentation.

Afshin Khadangi, Thomas Boudier, Vijay Rajagopal

Bioinformatics | Published : 2021


MOTIVATION: The inherent low contrast of electron microscopy (EM) datasets presents a significant challenge for rapid segmentation of cellular ultrastructures from EM data. This challenge is particularly prominent when working with high resolution big-datasets that are now acquired using electron tomography and serial block-face imaging techniques. Deep learning (DL) methods offer an exciting opportunity to automate the segmentation process by learning from manual annotations of a small sample of EM data. While many DL methods are being rapidly adopted to segment EM data no benchmark analysis has been conducted on these methods to date. RESULTS: We present EM-stellar, a platform that is host..

View full abstract

University of Melbourne Researchers

Citation metrics