Journal article

Evolution of solitary waves for a perturbed nonlinear Schrödinger equation

SM Hoseini, TR Marchant

Applied Mathematics and Computation | Published : 2010


Soliton perturbation theory is used to determine the evolution of a solitary wave described by a perturbed nonlinear Schrödinger equation. Perturbation terms, which model wide classes of physically relevant perturbations, are considered. An analytical solution is found for the first-order correction of the evolving solitary wave. This solution for the solitary wave tail is in integral form and an explicit expression is found, for large time. Singularity theory, usually used for combustion problems, is applied to the large time expression for the solitary wave tail. Analytical results are obtained, such as the parameter regions in which qualitatively different types of solitary wave tails occ..

View full abstract

Citation metrics