Journal article

The impulsive swirl of a gas

John Elie Sader

JOURNAL OF FLUID MECHANICS | CAMBRIDGE UNIV PRESS | Published : 2021

Abstract

The motion of a sphere in a viscous gas has been studied since the time of Sir George Gabriel Stokes who explored linear, steady and unsteady flows. While the unsteady Stokes equation is often used to calculate these flows, this continuum treatment cannot capture some key physical phenomena. This includes propulsion of a sphere by temperature gradients on its surface, without convection. Taguchi et al. (J. Fluid Mech., 2021) now calculate the flow generated by the impulsive rotation of a sphere in a gas, a problem first proposed by Stokes, using the linearised Boltzmann-BGK (Bhatnagar, Gross, Krook) equation. This statistical mechanical approach naturally captures continuum through to collis..

View full abstract

University of Melbourne Researchers