Journal article

Fire and Its Interactions With Other Drivers Shape a Distinctive, Semi-Arid 'Mallee' Ecosystem

Michael F Clarke, Luke T Kelly, Sarah C Avitabile, Joe Benshemesh, Kate E Callister, Don A Driscoll, Peter Ewin, Katherine Giljohann, Angie Haslem, Sally A Kenny, Steve Leonard, Euan G Ritchie, Dale G Nimmo, Natasha Schedvin, Kathryn Schneider, Simon J Watson, Martin Westbrooke, Matt White, Michael A Wouters, Andrew F Bennett



Fire shapes ecosystems globally, including semi-arid ecosystems. In Australia, semi-arid ‘mallee’ ecosystems occur primarily across the southern part of the continent, forming an interface between the arid interior and temperate south. Mallee vegetation is characterized by short, multi-stemmed eucalypts that grow from a basal lignotuber. Fire shapes the structure and functioning of mallee ecosystems. Using the Murray Mallee region in south-eastern Australia as a case study, we examine the characteristics and role of fire, the consequences for biota, and the interaction of fire with other drivers. Wildfires in mallee ecosystems typically are large (1000s ha), burn with high severity, commonly..

View full abstract


Funding Acknowledgements

We acknowledge the traditional owners of the lands where this research was conducted. We pay our respects to their elders, past, present and emerging. This synthesis arose from a workshop at La Trobe University held as part of the Mallee-Hawkeye Project, funded by the then Department of Environment and Primary Industries, Victoria, Australia. We extend our gratitude to the staff from agencies, non-government organizations and institutions who have been so generous in sharing their time, knowledge, expertise and support for the many research and management projects that underpin this synthesis; in particular Ross Bradstock, Jemima Connell, Ray Dayman, Malcom Gill, Victor Hurley, Jose Lahoz-Monfort, Peter Sandell, and Simon Verdon. Many thanks to Clare Kelly for designing Figures 9-11.