Journal article

FaIRv2.0.0: a generalized impulse response model for climate uncertainty and future scenario exploration

Nicholas J Leach, Stuart Jenkins, Zebedee Nicholls, Christopher J Smith, John Lynch, Michelle Cain, Tristram Walsh, Bill Wu, Junichi Tsutsui, Myles R Allen

GEOSCIENTIFIC MODEL DEVELOPMENT | COPERNICUS GESELLSCHAFT MBH | Published : 2021

Abstract

Here we present an update to the FaIR model for use in probabilistic future climate and scenario exploration, integrated assessment, policy analysis, and education. In this update we have focussed on identifying a minimum level of structural complexity in the model. The result is a set of six equations, five of which correspond to the standard impulse response model used for greenhouse gas (GHG) metric calculations in the IPCC's Fifth Assessment Report, plus one additional physically motivated equation to represent state-dependent feedbacks on the response timescales of each greenhouse gas cycle. This additional equation is necessary to reproduce non-linearities in the carbon cycle apparent ..

View full abstract

University of Melbourne Researchers

Grants

Awarded by Natural Environment Research Council


Awarded by European Union's Horizon 2020 research and innovation programme


Awarded by Wellcome Trust, Our Planet Our Health (Livestock, Environment and People - LEAP)


Awarded by NERC/IIASA Collaborative Research Fellowship


Awarded by TOUGOU/MEXT


Funding Acknowledgements

This research has been supported by the Natural Environment Research Council (grant no. NE/L002612/1 to Nicholas J. Leach and Stuart Jenkins), the European Union's Horizon 2020 research and innovation programme (grant no. 821003 (4C) to Myles R. Allen and Tristram Walsh), the Wellcome Trust, Our Planet Our Health (Livestock, Environment and People - LEAP) (grant no. 205212/Z/16/Z to John Lynch), the NERC/IIASA Collaborative Research Fellowship (grant no. NE/T009381/1 to Christopher J. Smith), and TOUGOU/MEXT (grant no. JPMXD0717935457 to Junichi Tsutsui).