Journal article

Curvature in the reproductive tract alters sperm-surface interactions

Mohammad Reza Raveshi, Melati S Abdul Halim, Sagar N Agnihotri, Moira K O'Bryan, Adrian Neild, Reza Nosrati

NATURE COMMUNICATIONS | NATURE RESEARCH | Published : 2021

Abstract

The fallopian tube is lined with a highly complex folded epithelium surrounding a lumen that progressively narrows. To study the influence of this labyrinthine complexity on sperm behavior, we use droplet microfluidics to create soft curved interfaces over a range of curvatures corresponding to the in vivo environment. We reveal a dynamic response mechanism in sperm, switching from a progressive surface-aligned motility mode at low curvatures (larger droplets), to an aggressive surface-attacking mode at high curvatures (smaller droplets of <50 µm-radius). We show that sperm in the attacking mode swim ~33% slower, spend 1.66-fold longer at the interface and have a 66% lower beating amplitude ..

View full abstract

University of Melbourne Researchers

Grants

Awarded by Australian Research Council (ARC)


Funding Acknowledgements

This work was supported by the Australian Research Council (ARC) Discovery Project Grants (DP190100343 to R.N. and DP210103361 to A.N. and R.N.) and Monash Interdisciplinary Research Grants to R.N. This work was performed in part at the Melbourne Center for Nanofabrication (MCN) in the Victorian Node of the Australian National Fabrication Facility (ANFF). We thank D. Jo Merriner for her assistance with the sperm capacitation assay and Farin Yazdan Parast for her help with fluorescent imaging.