Journal article

HEAL: an automated deep learning framework for cancer histopathology image analysis.

Yanan Wang, Nicolas Coudray, Yun Zhao, Fuyi Li, Changyuan Hu, Yao-Zhong Zhang, Seiya Imoto, Aristotelis Tsirigos, Geoffrey I Webb, Roger J Daly, Jiangning Song

Bioinformatics | Oxford University Press (OUP) | Published : 2021

Abstract

MOTIVATION: Digital pathology supports analysis of histopathological images using deep learning methods at a large-scale. However, applications of deep learning in this area have been limited by the complexities of configuration of the computational environment and of hyperparameter optimization, which hinder deployment and reduce reproducibility. RESULTS: Here, we propose HEAL, a deep learning-based automated framework for easy, flexible, and multi-faceted histopathological image analysis. We demonstrate its utility and functionality by performing two case studies on lung cancer and one on colon cancer. Leveraging the capability of Docker, HEAL represents an ideal end-to-end tool to conduct..

View full abstract

University of Melbourne Researchers