Journal article

Tractography dissection variability: What happens when 42 groups dissect 14 white matter bundles on the same dataset?

Kurt G Schilling, Francois Rheault, Laurent Petit, Colin B Hansen, Vishwesh Nath, Fang-Cheng Yeh, Gabriel Girard, Muhamed Barakovic, Jonathan Rafael-Patino, Thomas Yu, Elda Fischi-Gomez, Marco Pizzolato, Mario Ocampo-Pineda, Simona Schiavi, Erick J Canales-Rodriguez, Alessandro Daducci, Cristina Granziera, Giorgio Innocenti, Jean-Philippe Thiran, Laura Mancini Show all

NEUROIMAGE | ACADEMIC PRESS INC ELSEVIER SCIENCE | Published : 2021

Abstract

White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same intended white matter pathways, which directly affects tractography results, quantification, and interpretation. In this study, we aim to evaluate and quantify the variability that arises from different protocols for bundle segmentation. Through an open call to users of fiber tractography, including anatomists, clinicians, and algorithm developers, 4..

View full abstract

Grants

Awarded by National Institutes of Health


Awarded by ViSE/VICTR


Awarded by National Center for Research Resources


Awarded by National Institute of Child Health and Human Development


Awarded by NSF


Awarded by NIH NIBIB


Awarded by Medical Research Council PhD Studentship UK


Awarded by FCT - Fundacao para a Ciencia e a Tecnologia within CINTESIS, RD Unit


Awarded by Wellcome Trust


Awarded by Swiss National Science Foundation (SNSF)


Awarded by Sir Henry Wellcome Fellowship


Awarded by Dutch Research Council (NWO)


Awarded by National Health and Medical Research Council of Australia


Awarded by Australian Research Council


Awarded by NIH NIMH


Awarded by NIH


Awarded by Royal Children's Hospital Foundation


Awarded by Ministry of Science and Technology of Taiwan


Awarded by European Union


Awarded by ANR


Awarded by ANID-Basal


Awarded by ANIDFONDECYT



Funding Acknowledgements

This work was conducted in part using the resources of the Advanced Computing Center for Research and Education at Vanderbilt University, Nashville, TN. KS, BL, CH were supported by the National Institutes of Health under award numbers R01EB017230, and T32EB001628, and in part by ViSE/VICTR VR3029 and the National Center for Research Resources, Grant UL1 RR024975-01. This work was also possible thanks to the support of the Institutional Research Chair in NeuroInformatics of Universitede Sherbrooke, NSERC and Compute Canada (MD, FR). MP received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 754462. The Wisconsin group acknowledges the support from a core grant to the Waisman Center from the National Institute of Child Health and Human Development (IDDRC U54 HD090256). NSF OAC-1916518, NSF IIS-1912270, NSF IIS-1636893, NSF BCS-1734853, NIH NIBIB 1R01EB029272-01, and a Microsoft Faculty Fellowship to F.P. LF acknowledges the support of the Cluster of Excellence Matters of Activity. Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC 2025. SW is supported by a Medical Research Council PhD Studentship UK [MR/N013913/1]. The Nottingham group's processing was performed using the University of Nottingham's Augusta HPC service and the Precision Imaging Beacon Cluster. JPA, MA and SMS acknowledges the support of FCT - Fundacao para a Ciencia e a Tecnologia within CINTESIS, R&D Unit (reference UID/IC/4255/2013). MM was funded by the Wellcome Trust through a Sir Henry Wellcome Postdoctoral Fellowship [213722/Z/18/Z]. EJC-R is supported by the Swiss National Science Foundation (SNSF, Ambizione grant PZ00P2 185814/1). CMWT is supported by a Sir Henry Wellcome Fellowship (215944/Z/19/Z) and a Veni grant from the Dutch Research Council (NWO) (17331). FC acknowledges the support of the National Health and Medical Research Council of Australia (APP1091593 and APP1117724) and the Australian Research Council (DP170101815). NSF OAC-1916518, NSF IIS-1912270, NSF IIS-1636893, NSF BCS-1734853, Microsoft Faculty Fellowship to F.P. D.B. was partially supported by NIH NIMH T32MH103213 to William Hetrick (Indiana University). CL is partly supported by NIH grants P41 EB027061 and P30 NS076408 "Institutional Center Cores for Advanced Neuroimaging. JYMY received positional funding from the Royal Children's Hospital Foundation (RCH 1000). JYMY, JC, and CEK acknowledge the support of the Royal Children's Hospital Foundation, Murdoch Children's Research Institute, The University of Melbourne Department of Paediatrics, and the Victorian Government's Operational Infrastructure Support Program. C-HY is gratefulto the Ministry of Science and Technology of Taiwan (MOST 109-2222E-182-001-MY3) for the support. LC acknowledges support from CONACYT and UNAM. ARM acknowledges support from CONACYT. LJO, YR, and FZ were supported by NIH P41EB015902 and R01MH119222. AJG was supported by P41EB015898. NM was supported by 01MH119222, K24MH116366, and R01MH111917. This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No. 785907 & 945539 (HBP SGA2 & SGA3), and from the ANR IFOPASUBA- 19-CE45-0022-01. PG, CR, NL and AV were partially supported by ANID-Basal FB0008 and ANIDFONDECYT 1190701 grants.We would like to acknowledge John C Gore, Hiromasa Takemura, Anastasia Yendiki, and Riccardo Galbusera for their helplful suggestions regarding the analysis, figures, and discussions.