Journal article

Estimation of binary Markov random fields using Markov chain Monte Carlo

D Smith, M Smith

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS | AMER STATISTICAL ASSOC | Published : 2006

Abstract

This article compares three binary Markov random fields (MRFs) which are popular Bayesian priors for spatial smoothing. These are the Ising prior and two priors based on latent Gaussian MRFs. Concern is given to the selection of a suitable Markov chain Monte Carlo (MCMC) sampling scheme for each prior. The properties of the three priors and sampling schemes are investigated in the context of three empirical examples. The first is a simulated dataset, the second involves a confocal fluorescence microscopy dataset, while the third is based on the analysis of functional magnetic resonance imaging (fMRI) data. In the case of the Ising prior, single site and multi-site Swendsen-Wang sampling sche..

View full abstract

University of Melbourne Researchers