Journal article

Gradient-constrained minimum networks (II). Labelled or locally minimal Steiner points

M Brazil, DA Thomas, JF Weng

JOURNAL OF GLOBAL OPTIMIZATION | SPRINGER | Published : 2008

Abstract

A gradient-constrained minimum network T is a minimum length network, spanning a given set of nodes N in space with edges whose gradients are all no more than an upper bound m. The nodes in T but not in N are referred to as Steiner points. Such networks occur in the underground mining industry where the typical maximal gradient is about 1:7 (≈ 0.14). Because of the gradient constraint the lengths of edges in T are measured by a special metric, called the gradient metric. An edge in T is labelled as a b-edge, or an m-edge, or an f-edge if the gradient between its endpoints is greater than, or equal to, or less than m respectively. The set of edge labels at a Steiner point is called its labell..

View full abstract