Journal article

Hydroxyl radical regeneration in the photochemical oxidation of glyoxal: kinetics and mechanism of the HC(O)CO O-2 reaction

Gabriel da Silva

PHYSICAL CHEMISTRY CHEMICAL PHYSICS | ROYAL SOC CHEMISTRY | Published : 2010

Abstract

Glyoxal, HC(O)CHO, is an important trace component of the Earth's atmosphere, formed in biomass burning and in the photooxidation of volatile organic compounds (VOCs) like isoprene and aromatic hydrocarbons. The HC(O)CO free radical is the primary product of the glyoxal + OH reaction, and this study uses computational chemistry to show that the HC(O)CO radical can react with O(2) to regenerate the hydroxyl radical (OH) in the atmosphere. Master equation simulations indicate that the HC(O)C(O)O(2) peroxy radical adduct proceeds directly to CO(2) + CO + OH in a chemically activated mechanism, with minor collisional deactivation of the relatively unstable HC(O)C(O)O(2) peroxy radical. The react..

View full abstract

University of Melbourne Researchers