Journal article
Protective Efficacy of Cross-Reactive CD8( ) T Cells Recognising Mutant Viral Epitopes Depends on Peptide-MHC-I Structural Interactions and T Cell Activation Threshold
Sophie A Valkenburg, Stephanie Gras, Carole Guillonneau, Nicole L La Gruta, Paul G Thomas, Anthony W Purcell, Jamie Rossjohn, Peter C Doherty, Stephen J Turner, Katherine Kedzierska
PLOS PATHOGENS | PUBLIC LIBRARY SCIENCE | Published : 2010
Abstract
Emergence of a new influenza strain leads to a rapid global spread of the virus due to minimal antibody immunity. Pre-existing CD8(+) T-cell immunity directed towards conserved internal viral regions can greatly ameliorate the disease. However, mutational escape within the T cell epitopes is a substantial issue for virus control and vaccine design. Although mutations can result in a loss of T cell recognition, some variants generate cross-reactive T cell responses. In this study, we used reverse genetics to modify the influenza NP(336-374) peptide at a partially-solvent exposed residue (N->A, NPN3A mutation) to assess the availability, effectiveness and mechanism underlying influenza-specifi..
View full abstractRelated Projects (3)
Grants
Awarded by NHMRC
Awarded by NIH
Awarded by EU
Funding Acknowledgements
This work was funded by the NHMRC Project Grants to PCD (AI454595) and KK (AI454312), a University of Melbourne Early Career Researcher Grant (to KK), NIH grant AI170251 and NHMRC program grant to PCD, SJT (AI567122). KK and NLG are NHMRC RD Wright Fellows, AWP is a NHMRC Senior Research Fellow, SJT is a Pfizer Senior Research Fellow and CG is a Marie Curie International Fellow and is supported by the 6th FP of the EU, Marie Curie #040840. JR is an ARC Federation Fellow. SAV is a recipient of the Australian Postgraduate Award. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.