Conference Proceedings

A Simple Bayesian Algorithm for Feature Ranking in High Dimensional Regression Problems

Enes Makalic, Daniel F Schmidt, DH Wang (ed.), M Reynolds (ed.)

Lecture Notes in Artificial Intelligence: AI 2011 Advances in Artificial Intelligence, Proceedings | SPRINGER-VERLAG BERLIN | Published : 2011

Abstract

Variable selection or feature ranking is a problem of fundamental importance in modern scientific research where data sets comprising hundreds of thousands of potential predictor features and only a few hundred samples are not uncommon. This paper introduces a novel Bayesian algorithm for feature ranking (BFR) which does not require any user specified parameters. The BFR algorithm is very general and can be applied to both parametric regression and classification problems. An empirical comparison of BFR against random forests and marginal covariate screening demonstrates promising performance in both real and artificial experiments. © 2011 Springer-Verlag.