Journal article

Organellar proteomics reveals hundreds of novel nuclear proteins in the malaria parasite Plasmodium falciparum

Sophie C Oehring, Ben J Woodcroft, Suzette Moes, Johanna Wetzel, Olivier Dietz, Andreas Pulfer, Chaitali Dekiwadia, Pascal Maeser, Christian Flueck, Kathrin Witmer, Nicolas MB Brancucci, Igor Niederwieser, Paul Jenoe, Stuart A Ralph, Till S Voss



BACKGROUND: The post-genomic era of malaria research provided unprecedented insights into the biology of Plasmodium parasites. Due to the large evolutionary distance to model eukaryotes, however, we lack a profound understanding of many processes in Plasmodium biology. One example is the cell nucleus, which controls the parasite genome in a development- and cell cycle-specific manner through mostly unknown mechanisms. To study this important organelle in detail, we conducted an integrative analysis of the P. falciparum nuclear proteome. RESULTS: We combined high accuracy mass spectrometry and bioinformatic approaches to present for the first time an experimentally determined core nuclear pro..

View full abstract

University of Melbourne Researchers


Awarded by Australian Research Council

Awarded by Swiss National Science Foundation

Awarded by Novartis Foundation for Medicine and Biology

Funding Acknowledgements

The authors would like to thank Terry Speed and James Bailey for helpful comments. We are grateful to Tim-Wolf Gilberger, Mike Duffy, Michael Terns, and Geoff McFadden for providing antibodies. BJW is funded by a University of Melbourne MRS scholarship. SAR is funded by an Australian Research Council Future Fellowship (FT0990350). NMBB received a Boehringer Ingelheim PhD fellowship. This work was supported by the Swiss National Science Foundation (PP00A-110835; PP00P3_130203), the Novartis Foundation for Medicine and Biology (08C46), the Emilia-Guggenheim-Schnurr Foundation, and the Rudolf Geigy Foundation. The funders had no role in study design, data collection, analysis, and interpretation, the decision to publish, or preparation of the manuscript.