Conference Proceedings

Applications of nanophotonics to classical and quantum information technology

RG Beausoleil, D Fattal, M Fiorentino, CM Santori, G Snider, SM Spillane, RS Williams, WJ Munro, TP Spiller, JR Rabeau, S Prawer, F Jelezko, P Tamarat, J Wrachtrup, P Hemmer, M Gerken (ed.), NK Dhar (ed.), AK Dutta (ed.), MS Islam (ed.)

NANOPHOTONICS FOR COMMUNICATION: MATERIALS, DEVICES, AND SYSTEMS III | SPIE-INT SOC OPTICAL ENGINEERING | Published : 2006

Abstract

Moore's Law has set great expectations that the performance/price ratio of commercially available semiconductor devices will continue to improve exponentially at least until the end of the next decade. Although the physics of nanoscale silicon transistors alone would allow these expectations to be met, the physics of the metal wires that connect these transistors will soon place stringent limits on the performance of integrated circuits. We will describe a Si-compatible global interconnect architecture - based on chip-scale optical wavelength division multiplexing - that could precipitate an "optical Moore's Law" and allow exponential performance gains until the transistors themselves become..

View full abstract

University of Melbourne Researchers