Journal article

A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation

Huaying Zhao, Rodolfo Ghirlando, Carlos Alfonso, Fumio Arisaka, Ilan Attali, David L Bain, Marina M Bakhtina, Donald F Becker, Gregory J Bedwell, Ahmet Bekdemir, Tabot MD Besong, Catherine Birck, Chad A Brautigam, William Brennerman, Olwyn Byron, Agnieszka Bzowska, Jonathan B Chaires, Catherine T Chaton, Helmut Coelfen, Keith D Connaghan Show all

PLOS ONE | PUBLIC LIBRARY SCIENCE | Published : 2015

Abstract

Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance..

View full abstract

Grants

Awarded by Rudolf Virchow Center for Experimental Biomedicine - German Research Council (Deutsche Forschungsgemeinschaft, DFG)


Awarded by National Cancer Institute


Awarded by National Institute of General Medical Sciences


Awarded by MINECO-Spain/FEDER


Awarded by Centre for Preclinical Research and Technology (CePT) - European Union


Awarded by FRISBI


Awarded by GRAL within the Grenoble Partnership for Structural Biology (PSB)


Awarded by NIH


Awarded by French Infrastructure for Integrated Structural Biology (FRISBI)


Awarded by European Regional Development Fund within the Innovation Economy Operational Program


Awarded by National Research Foundation of Korea


Awarded by NATIONAL CANCER INSTITUTE


Awarded by NATIONAL HEART, LUNG, AND BLOOD INSTITUTE


Awarded by NATIONAL INSTITUTE OF BIOMEDICAL IMAGING AND BIOENGINEERING


Awarded by NATIONAL INSTITUTE OF DIABETES AND DIGESTIVE AND KIDNEY DISEASES


Awarded by NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES


Awarded by Biotechnology and Biological Sciences Research Council


Awarded by Engineering and Physical Sciences Research Council


Awarded by Novo Nordisk Fonden


Awarded by Grants-in-Aid for Scientific Research


Funding Acknowledgements

This work was supported by the Intramural Research Programs of the National Institute of Biomedical Imaging and Bioengineering, the National Heart, Lung, and Blood Institute, and the National Institute of Diabetes and Digestive and Kidney Diseases National Institutes of Health; the Max Planck Society; and the Rudolf Virchow Center for Experimental Biomedicine by the German Research Council (Deutsche Forschungsgemeinschaft, DFG) FZ 82. Further, this work was supported by National Cancer Institute grant CA35635, grants from the National Institute of General Medical Sciences (GM 095822, GM 109102, GM 094363, and P30GM103519), and by grant CTQ2012-33717 from MINECO-Spain/FEDER. The purchase of the XL-I AUC instrument for IIMCB Warsaw was supported by Centre for Preclinical Research and Technology (CePT) - European Union POIG.02.02.00-14-024/08-00 project. This work used the platforms of the Grenoble Instruct centre (ISBG; UMS 3518 CNRS-CEA-UJF-EMBL) with support from FRISBI (ANR-10-INSB-05-02) and GRAL (ANR-10-LABX-49-01) within the Grenoble Partnership for Structural Biology (PSB). This work was supported in part by NIH research grants GM-15792 and GM-29158 and by a Shared Instrument Proposal grant from NSF (P. H. von Hippel, Principle Investigator). The work in the Strasbourg centre was supported by the French Infrastructure for Integrated Structural Biology (FRISBI) ANR-10-INSB-05-01, and Instruct as part of the European Strategy Forum on Research Infrastructures (ESFRI). Some of the experiments in the present study were performed in the NanoFun laboratories co-financed by the European Regional Development Fund within the Innovation Economy Operational Program, Project No. POIG.02.02.00-00025/09. S-JK acknowledges support from National Research Foundation of Korea (2011-0010437). LR acknowledges the receipt of EMBO long-term and Marie Curie IEF fellowships. DH acknowledges the receipt of an A.N.U. Senior Research Fellowship. DME and the University of Utah Protein Interaction Core Facility are supported by NIH Grant GM82545. KL acknowledges NIH grant GM067777, and DK acknowledges NIH grant F31GM105363. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.